MADE EASY
India's Best Institute for IES, GATE & PSUs

GATE 2017
Electrical Engineering
(Morning Session : 11-02-2017)

Click here for Detailed Solutions

- MADE EASY has taken due care in making solutions. If you find any discrepancy/typo/technical error, kindly share/post your views.
- If you want to contest the answer key given by MADE EASY, kindly post your suggested answer with detailed explanations at made easy facebook ++.
- Students are requested to share their expected marks in GATE 2017.

www.madeeasy.in

Corporate Office: 44-A/1, Kalu Sarai, New Delhi - 110016 | Ph: 011-45124612, 9958995830
ELECTRICAL ENGINEERING

Q.1 The Boolean expression $AB + A\overline{C} + BC$ simplifies to
(a) $BC + A\overline{C}$
(b) $AB + A\overline{C} + B$
(c) $AB + A\overline{C}$
(d) $AB + BC$

Ans. (a)

\[
\begin{array}{c|cc|c|c}
& \overline{B}\overline{C} & BC & BC & B\overline{C} \\
\hline
\overline{A} & 0 & 1 & 1 & 3 \\
A & 1 & 5 & 1 & 7 \\
\end{array}
\]

$A\overline{C} + BC$
$BC + A\overline{C}$

End of Solution

Q.2 The matrix $A = \begin{bmatrix} 3 & 0 & 1 \\ 2 & 0 & 1 \\ 2 & 0 & 3 \end{bmatrix}$ has three distinct eigenvalues and one of its eigenvectors is $\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$. Which one of the following can be another eigenvector of A?

(a) $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$
(b) $\begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix}$
(c) $\begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$
(d) $\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$

Ans. (c)

The given matrix is symmetric and all its eigenvalues are distinct. Hence all its eigen vectors are orthogonal one of the eigen vector is $x_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$.

The corresponding orthogonal vector in the given option is C. i.e. $x_2 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$

$x_1^T x_2 = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix} = 1 + 0 - 1 = 0$

End of Solution
Classroom Course is designed for comprehensive preparation of ESE, GATE and PSUs. The main feature of the course is that all the subjects are taught from basic level to advance level. There is due emphasis on solving objective and numerical questions in the class. High quality study material is provided during the classroom course with sufficient theory and practice test papers for objective and conventional questions along with regular assignments for practice. Classes are taken by highly experienced professors and ESE qualified toppers. MADE EASY team has developed very effective methodology of teaching and advance techniques and shortcuts to solve objective questions in limited time.”
Q.3 Consider \(g(t) = \begin{cases} t - \lfloor t \rfloor, & t \geq 0 \\ t - \lceil t \rceil, & \text{otherwise} \end{cases} \), where \(\ell \in \mathbb{R} \). Here \(\lfloor t \rfloor \) represents the largest integer less than or equal to \(t \) and \(\lceil t \rceil \) denotes the smallest integer greater than or equal to \(t \). The coefficient of the second harmonic component of the Fourier series representing \(g(t) \) is ________.

Ans. \(0.318 \)

\[
g(t) = \begin{cases} t - \lfloor t \rfloor, & t \geq 0 \\ t - \lceil t \rceil, & t < 0 \end{cases}
\]

\(\lfloor t \rfloor \) is greatest integer less than \(t \).
\(\lceil t \rceil \) is smallest integer greater than \(t \).

To calculate Fourier series coefficient we differentiate \(g(t) \),

\[
g'(t) = \left\{ 1 + \sum_{k=-\infty}^{\infty} -\delta(t-k) \right\}
\]

The Fourier series coefficient of \(g'(t) \) will be

\[
G_k' = \begin{cases} 1, & k = 0 \\ 0, & k \neq 0 \end{cases} + \left\{ -1 \forall k \right\}
\]

\[
G_k' = \begin{cases} 0, & k = 0 \\ -1, & k \neq 0 \end{cases}
\]

Thus,

\[
G_k = \frac{G_k'}{j\omega_0k}
\]

and

\[
G_0 = \frac{1}{1} \int_0^1 g(t) dt = \frac{1}{2} \times 1 \times 1 = \frac{1}{2}
\]

and

\[
G_k = -\frac{1}{j\omega_0k}, \quad k \neq 0
\]

\[
\Rightarrow G_k = -\frac{1}{j\pi k}, \quad k \neq 0
\]

The

\[
g(t) = \sum_{k=-\infty}^{\infty} G_k e^{j\omega_0kt}
\]
Since, G_k is imaginary the $g(t)$ will have only sin terms and
\[b_k = \text{coefficient of sin terms} \]
\[= j(G_k - G_{-k}) = j\left(-\frac{1}{j\pi k} - \frac{1}{j\pi k}\right) = \frac{-2}{\pi k} \]
Thus,
\[g(t) = 0.5 + \sum_{k=1}^{\infty} b_k \sin \omega_0 kt \]
\[= 0.5 + b_1 \sin \omega_0 t + b_2 \sin 2\omega_0 t + ... \]
\[\Rightarrow \text{2nd harmonic has coefficient } b_2 \]
and
\[b_2 = \left|\frac{-2}{\pi k}\right|_{k=2} = \frac{1}{\pi} \]
\[\Rightarrow |b_2| = \frac{1}{3.14} = 0.318 \]

Q.4 The slope and level detector circuit in a CRO has a delay of 100 ns. The start-stop sweep generator has a response time of 50 ns. In order to display correctly, a delay line of (a) 150 ns has to be inserted into the y-channel (b) 150 ns has to be inserted into the x-channel (c) 150 ns has to be inserted into both x and y channels (d) 100 ns has to be inserted into both x and y channels

Ans. (a)
A delay line of 150 ns has to be inserted into the y-channel to get synchronous between sweep signal applied to x-plate and test signal applied to y-plate.

Q.5 A closed loop system has the characteristic equation given by $s^3 + Ks^2 + (K+2)s + 3 = 0$. For this system to be stable, which one of the following conditions should be satisfied? (a) $0 < K < 0.5$ (b) $0.5 < K < 1$ (c) $0 < K < 1$ (d) $K > 1$

Ans. (d)
Characteristic equation is,
\[s^3 + Ks^2 + (K+2)s + 3 = 0 \]
For this system to be stable, using Routh’s criterion, we can write,
\[3 < K(K + 2) \]
or \[K^2 + 2K - 3 > 0 \]
or \[(K + 3)(K - 1) > 0 \]
Here, the valid answer will be out of all the options given. i.e. $K > 1$.

End of Solution
Q.6 For the power semiconductor devices IGBT, MOSFET, diode and Thyristor, which one of the following statements is TRUE?
(a) All the four are majority carrier devices.
(b) All the four are minority carrier devices.
(c) IGBT and MOSFET are majority carrier devices, whereas Diode and Thyristor are minority carrier devices.
(d) MOSFET is majority carrier device, whereas IGBT, Diode, thyristor are minority carrier devices.

Ans. (d)

Q.7 The equivalent resistance between the terminals \(A \) and \(B \) is \(\underline{\text{3} \Omega} \).

\[R_{AB} = 1 + \frac{6}{5} + 0.8 = 3 \Omega \]

Q.8 The power supplied by the 25 V source in the figure shown below is ______ W.

\[I + 0.4I = 14 \]

or \[I = 10 \text{ A} \]

Now, power supplied, \[P = 25 \times 10 = 250 \text{ W} \]

Ans. (250)

Q.9 For the circuit shown in the figure below, assume that diodes \(D_1, D_2 \) and \(D_3 \) are ideal.

The DC components of voltages \(v_1 \) and \(v_2 \), respectively are

(a) 0 V and 1 V
(b) -0.5 V and 0.5 V
(c) 1 V and 0.5 V
(d) 1 V and 1 V

Ans. (b)

\[V_{2\text{ avg}} = \frac{V_m}{\pi} = \frac{\pi/2}{\pi} = \frac{1}{2} = 0.5 \text{ V} \]

\[V_{1\text{ avg}} = \frac{1}{2\pi} \left(\int_0^{\pi} \sin 100\pi t \, d(\omega t) + \int_{\pi}^{2\pi} \pi \sin 100\pi t \, d(\omega t) \right) = -0.5 \text{ V} \]
Q.10 A three-phase, 50 Hz, star-connected cylindrical-rotor synchronous machine is running as a motor. The machine is operated from a 6.6 kV grid and draws current at unity power factor (UPF). The synchronous reactance of the motor is 30 Ω per phase. The load angle is 30°. The power delivered to the motor in kW is \[\text{________} \]. (Give the answer up to one decimal place.)

Ans. \[(726) \]

\[
P = \frac{3E_{ph}V_{ph}}{X_s} \sin \delta \quad \text{W}
\]

\[
= \frac{3 \times 6.6 \times 1000}{\sqrt{3}} \times \frac{6.6 \times 1000}{\sqrt{3}} \sin(30°)
\]

\[
\therefore \quad P = 726 \text{ kW}
\]

Q.11 The following measurement are obtained on a single phase load: \[V = 220 \text{ V} \pm 1\% \], \[I = 5.0 \text{ A} \pm 1\% \] and \[W = 555 \text{ W} \pm 2\% \]. If the power factor is calculated using these measurements, the worst case error in the calculated power factor in percent is \[\text{________} \]. (Give answer up to one decimal place.)

Ans. \[(4) \]

\[V = 220 \pm 1\% \]
\[I = 5 \pm 1\% \]
\[W = 555 \pm 2\% \]

\[W = VI \cdot \cos(\phi) \]

\[\therefore \quad \text{p.f.} = \cos(\phi) = \frac{W}{VI} \]

\[\text{p.f.} = \cos(\phi) = \frac{555 \pm 2\%}{(220 \pm 1\%)(5 \pm 1\%)} = \frac{555}{220 \times 5} \pm 4\% \]

\[\text{p.f.} = \cos(\phi) = 0.5 \pm 4\% \]

Q.12 Let \[z(t) = x(t) * y(t) \], where "*" denotes convolution. Let \(c \) be a positive real-valued constant. Choose the correct expression for \(z(ct) \).

(a) \[c \cdot x(ct) * y(ct) \]
(b) \[x(ct) * y(ct) \]
(c) \[c \cdot x(t) * y(ct) \]
(d) \[c \cdot x(ct) * y(t) \]

Ans. \[(a) \]

Time scaling property of convolution.

If, \[x(t) * y(t) = z(t) \]

then, \[x(ct) * y(ct) = \frac{1}{c} z(ct) \]

\[\Rightarrow \quad z(ct) = c \cdot x(ct) * y(ct) \]
Q.13 A 10-bus power system consists of four generator buses indexed at G_1, G_2, G_3, G_4 and six load buses indexed as L_1, L_2, L_3, L_4, L_5, L_6. The generator-bus G_1 is considered as slack bus, and the load buses L_3 and L_4 are voltage controlled buses. The generator at bus G_2 cannot supply the required reactive power demand, and hence it is operating at its maximum reactive power limit. The number of non-linear equations required for solving the load flow problem using Newton-Raphson method in polar form is ______.

Ans. (14)

Total number of buses $= 10$

- $G_1 = \text{slack bus}$
- $G_2 = \text{PQ bus (reactive power limit is reached)}$
- $G_3, G_4 = \text{PV bus}$

Minimum number of non-linear equations to be solved

$= \text{Number of unknown bus voltage variables}$

$= 2 \times 10 - 2 - 4 = 14$

Q.14 For a complex number z, $\lim_{z \to i} \frac{z^2 + 1}{z^3 + 2z - i(z^2 + 2)}$ is

(a) $-2i$
(b) $-i$
(c) i
(d) $2i$

Ans. (d)

$$
\frac{\text{i}t}{z \to i} \quad \frac{z^2 + 1}{z^3 + 2z - i(z^2 + 2)} = \left(\frac{0}{0} \text{ from } \right)
$$

$$
\frac{\text{i}t}{z \to i} \quad \frac{2z}{3z^2 + 2 - i(2z)}
$$

$$
= \frac{2i}{3i^2 + 2 - i(2i)} = \frac{2i}{-3 + 2 + 2} = \frac{2i}{-3 + 4} = 2i
$$

Q.15 Consider an electron, a neutron and a proton initially at rest and placed along a straight line such that the neutron is exactly at the center of the line joining the electron and proton. At \(t = 0 \), the particles are released but are constrained to move along the same straight line. Which of these will collide first?
(a) the particles will never collide (b) all will collide together
(c) proton and neutron (d) electron and neutron

Ans. (d)
Given that electron, neutron and proton are in a straight line

![Electron, Neutron, Proton diagram]

The electron will move towards proton and proton will move towards electron and force will be same \(F = \frac{q_1 q_2}{4\pi \varepsilon_0 R^2} \). But acceleration of electron will be more than proton as mass of electron < mass of proton. Since neutron are neutral they will not move. Thus electron will hit neutron first.

Q.16 A 3-phase voltage source inverter is supplied from a 600 V DC source as shown in the figure below. For a star connected resistive load of 20 \(\Omega \) per phase, the load power for 120° device conduction. in kW, is _______.

![Inverter diagram]

Ans. (9)

![Voltage waveform diagram]
\[V_{\text{rms}} = \sqrt{\frac{1}{\pi} (300)^2 \frac{2\pi}{3}} = 300 \sqrt{\frac{2}{3}} = 244.94 \text{ V} \]

\[\frac{3V^2}{R} = \frac{3 \times (244.94)^2}{20} = 9 \text{ kW} \]

Q.17 Consider the system with following input-output relation \(y[n] = (1 + (-1)^n)x[n] \), where \(x[n] \) is the input and \(y[n] \) is the output. The system is
(a) invertible and time invariant
(b) invertible and time varying
(c) non-invertible and time invariant
(d) non-invertible and time varying

Ans. (b)

Given relationship,
\[y(n) = [1 + (-1)^n] \ x(n) \]

Time invariance test:
\[x(n) \quad \text{System} \quad y(n) \quad \text{Delay of} \quad \text{``1''} \quad y(n-1) = [1 + (-1)^{n-1}] \ x(n-1) \]

\[\text{Delay of} \quad \text{``1''} \quad x(n-1) \quad \text{System} \quad y'(n) = [1 + (-1)^n] \ x(n-1) \]

Since, \(y(n-1) \neq y'(n) \)
So, the system is time variant.

Invertibility test:

<table>
<thead>
<tr>
<th>(x(n))</th>
<th>(y(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\delta(n))</td>
<td>([1 + (-1)^n] \ \delta(n) = [1 + (-1)^0] \ \delta(n) = 2 \delta(n))</td>
</tr>
<tr>
<td>(2 \delta(n))</td>
<td>([1 + (-1)^n] \ 2 \delta(n) = [1 + (-1)^0] \ 2 \delta(n))</td>
</tr>
<tr>
<td></td>
<td>(= 2 \times 2 \delta(n) = 4 \delta(n))</td>
</tr>
</tbody>
</table>

Thus, we are getting one to one mapping between input and output. So, the system is invertible.
Mains Classroom Program & Mains Test Series
Unique, effective, rewarding & dynamic approach

Batches starting from 15th Feb, 2017

Key Features:
- 300 Hrs. of classes with comprehensive & in-depth discussion on conventional questions.
- Classes to be taken by the group of senior teachers only.
- Well designed comprehensive Mains Exclusive workbooks for every subject which contain 2 sections i.e. unsolved and solved (for self practice).
- Special sessions on improving motivation, writing skills, time management & presentation skills by B. Singh Sir.
- Dynamic test series on every Sunday having test of 3 hours in synchronisation with syllabus taught in the classes exactly on the UPSC pattern and environment.
- Test Series contains Repeat Topics and New Topics to maintain continuity in study.
- Facility to cross check the evaluated answer sheet & access to see the answer sheet of top scorer of every test to compare your performance.
- Provision to interact with teachers, write your missed tests & discuss doubts via online mode using "Facebook++" (A social learning platform of MADE EASY).
- Provision of reward for top rankers in test series.

Mains Test Series is being conducted at all MADE EASY Centres across India

8 Subjectwise Tests + 4 Full Syllabus Tests = 12 Total Tests

Test Series starting from 12th Mar, 2017 | Streams Offered: CE, ME, EE, E&T
For batch timing, test schedule, reward programme & online enrollments, visit: www.madeeasy.in

Online Facility to Write Mains Test Series

Write Mains Test Series from your home through Facebook++ (A social learning platform of MADE EASY). Visit: www.madeeasy.in

Corporate Office: 44-A/1, Kalu Sarai, (Sarvapriya Vihar) New Delhi-110016
011-45124612, 9958995830 www.madeeasy.in
Q.18 A 3-bus power system is shown in the figure below, where the diagonal elements of Y-bus matrix are: \(Y_{11} = -j12\) pu, \(Y_{22} = -j15\) pu and \(Y_{33} = -j7\) pu.

The per unit values of the line reactances \(p, q\) and \(r\) shown in the figure are

(a) \(p = -0.2, q = -0.1, r = -0.5\)
(b) \(p = 0.2, q = 0.1, r = 0.5\)
(c) \(p = -5, q = -10, r = -2\)
(d) \(p = 5, q = 10, r = 2\)

Ans. (b)

Given,
\[Y_{11} = -j12 \text{ p.u.} \]
\[Y_{22} = -j15 \text{ p.u.} \]
\[Y_{33} = -j7 \text{ p.u.} \]

We know that,
\[Y_{11} = y_{12} + y_{13} = -j12 \text{ p.u.} \] \(\) ...(i)
\[Y_{22} = y_{12} + y_{23} = -j15 \text{ p.u.} \] \(\) ...(ii)
\[Y_{33} = y_{13} + y_{23} = -j7 \text{ p.u.} \] \(\) ...(iii)

From equation (i) and (ii)
\[y_{13} - y_{23} = j3 \text{ p.u.} \]
\[y_{13} + y_{23} = -j7 \text{ p.u.} \] \(\) ...(iii)
\[y_{13} = -j2 \text{ p.u.} \]
\[y_{23} = -j5 \text{ p.u.} \]
\[y_{12} = -j10 \text{ p.u.} \]

The p.u. values of line reactances \(p, q\) and \(r\) are
\[jr = \frac{1}{-j2} = j0.5 \text{ p.u.} \]
\[jp = \frac{1}{-j5} = j0.2 \text{ p.u.} \]
\[jq = \frac{1}{-j10} = j0.1 \text{ p.u.} \]

\[\therefore p = 0.2, q = 0.1, r = 0.5 \]
Q.19 Consider the unity feedback control system shown. The value of K that results in a phase margin of the system to be 30° is ________ . (Give the answer up to two decimal places.)

\[\begin{align*}
 & U(s) + \frac{Ke^{-s}}{s} \rightarrow \text{Block} \rightarrow Y(s) \\
 & \text{Phase margin} = 30°
\end{align*} \]

Ans. \((1.047)\)

Forward path transfer function,

\[G(s) = \frac{Ke^{-s}}{s} \]

Given, \(\text{Phase margin} = 30°\)
or \(\text{Phase margin} = 180° + \phi\)
\[30° = 180° + \phi\]
\[\phi = -150°\]
\[\phi = \angle G(j\omega)_{\omega=\omega_c} \quad \text{[where, } \omega_c \text{ is gain crossover frequency]}\]

\[\angle G(j\omega) = -90° - 57.3 \ \omega°\]

At \(\omega = \omega_c\) \[\text{[gain crossover frequency]}\]

\[|G(j\omega)| = 1\]

or \[\frac{K \times 1}{\omega} = 1 \Rightarrow \omega = \omega_c = K \text{ rad/sec.}\]

\[\therefore \quad \angle G(j\omega)_{\omega=\omega_c} = -90° - 57.3 \ K\]

\(-90° - 57.3 \ K° = -150°\)
\[-57.3 \ K° = -60°\]

\[K = \frac{60}{57.3} = 1.047\]
Q.20 Let \(I = c \iint_R xy^2 \, dx \, dy \), where \(R \) is the region shown in the figure and \(c = 6 \times 10^{-4} \). The value of \(I \) equals \(\quad \). (Give the answer up to two decimal places.)

![Graph of the region R]

\[
I = c \iiint_R xy^2 \, dx \, dy
= C \int_1^5 \int_{y=0}^{2x} xy^2 \, dy \, dx
= C \left[\frac{y^3}{3} \right]_0^{2x} \int_1^5 dx
= C \left[\frac{8x^3}{3} \right]_1^5 dx
= C \frac{8}{3} \left[\frac{x^5}{5} \right]_1^5
= \frac{8C}{3} \left(5^5 - 1 \right)
= \frac{8C}{3} (625 - 0.2)
= \frac{8}{3} (6 \times 10^{-4})(625 - 0.2) = 0.99968
\]

Ans. (0.99968)
Q.21 A source is supplying a load through a 2-phase, 3-wire transmission system as shown in figure below. The instantaneous voltage and current in phase-a are \(v_{an} = 220 \sin(100 \pi t) \text{ V}\) and \(i_a = 10 \sin(100 \pi t) \text{ A}\), respectively. Similarly for phase-b, the instantaneous voltage and current are \(v_{bn} = 220 \cos(100 \pi t) \text{ V}\) and \(i_b = 10 \cos(100 \pi t) \text{ A}\), respectively.

The total instantaneous power flowing from the source to the load is
(a) 2200 W (b) \(2200 \sin^2(100\pi t)\) W
(c) 4400 W (d) \(2200 \sin(100\pi t) \cos(100\pi t)\) W

Ans. (a)
\[
\begin{align*}
v_{an} &= 220 \sin(100 \pi t) \\
i_a &= 10 \sin(100 \pi t) \\
v_{bn} &= 220 \cos(100 \pi t) \\
i_b &= 10 \cos(100 \pi t) \\
p &= v_{an}i_a + v_{bn}i_b \\
\implies & = 2200 \text{ W}
\end{align*}
\]

Q.22 A 4-pole induction machine is working as an induction generator. The generator supply frequency is 60 Hz. The rotor current frequency is 5 Hz. The mechanical speed of the rotor in RPM is
(a) 1350 (b) 1650
(c) 1950 (d) 2250

Ans. (c)
Induction Generator Mode:
\[
N > N_s \quad \text{i.e.} \quad (s \text{ is negative})
\]
\[
\therefore \quad P = 4, \quad f = 60 \text{ Hz}, \quad N_s = 1800 \text{ rpm}
\]
Rotor frequency given = 5 Hz \(\Rightarrow (s \times f)\)
\[
\therefore \quad f = 60 \text{ Hz}
\]
\[
\therefore \quad s = \frac{5}{60} = 0.0833
\]
\[
\therefore \quad \text{It is induction generator slip will be} \quad -0.0833.
\]
\[
\text{s} = \frac{1800 - N}{1800} = -0.0833
\]
\[
\therefore \quad N = 1950 \text{ rpm}
\]

End of Solution
Q.23 A solid iron cylinder is placed in a region containing a uniform magnetic field such that the cylinder axis is parallel to the magnetic field direction. The magnetic field lines inside the cylinder will
(a) bend closer to the cylinder axis (b) bend farther away from the axis
(c) remain uniform as before (d) cease to exist inside the cylinder

Ans. (a)
Iron being a ferromagnetic material, magnetic lines of force bend closer to cylindrical axis.

Q.24 The transfer function of a system is given by, \(\frac{V_o(s)}{V_i(s)} = \frac{1 - s}{1 + s} \). Let the output of the system be \(v_o(t) = V_m \sin(\omega t + \varphi) \) for the input, \(v_i(t) = V_m \sin(\omega t) \). Then the minimum and maximum values of \(\varphi \) (in radians) are respectively

(a) \(\frac{-\pi}{2} \) and \(\frac{\pi}{2} \) (b) \(\frac{-\pi}{2} \) and 0
(c) 0 and \(\frac{\pi}{2} \) (d) \(-\pi \) and 0

Ans. (d)
\[\frac{V_o(s)}{V_i(s)} = \frac{1 - s}{1 + s} = H(s) \]

For the minimum and maximum values of “\(\varphi \)”.

\[H(j\omega) = \frac{1 - j\omega}{1 + j\omega} \]

\[\angle H(j\omega) = -2 \tan^{-1} \omega \]
At \(\omega = 0; \quad \angle H(j\omega) = 0^\circ \)
At \(\omega = \infty; \quad \angle H(j\omega) = -\pi \)

Q.25 In the converter circuit shown below, the switches are controlled such that the load voltage \(v_o(t) \) is a 400 Hz square wave.

![Converter Circuit Diagram](image)

The RMS value of the fundamental component of \(v_o(t) \) in volts is ________.
Ans. \((198.06)\)

\[
V_{01} = \frac{4V_s}{\sqrt{2} \pi} = \frac{4 \times 220}{\sqrt{2} \pi} = 198.06 \text{ V}
\]

Q.26
A 220 V DC series motor runs drawing a current of 30 A from the supply. Armature and field circuit resistance are 0.4 Ω and 0.1 Ω respectively. The load torque varies as the square of the speed. The flux in the motor may be taken as being proportional to the armature current. To reduce the speed of the motor by 50%, the resistance in ohms that should be added in series with the armature is _________. (Give the answer up to two decimal places.)

Ans. \((10.75)\)

\[
\begin{align*}
T & \propto N^2 & \phi & \propto I_a & T & \propto I_a^2 \\
\therefore \quad N_2^2 & \propto I_{a2}^2 \\
\therefore \quad \frac{N_2}{N_1} & = \frac{I_{a2}}{I_{a1}} \\
\therefore \quad 0.5 & = \frac{I_{a2}}{30} \\
\Rightarrow \quad I_{a2} & = 15 \text{ A}
\end{align*}
\]

For series motor,

\[
\frac{N_2}{N_1} = \frac{E_{b2}}{E_{b1}} \times \frac{I_{a1}}{I_{a2}}
\]

\[
\therefore \quad 0.5 = \frac{E_{b2}}{E_{b1}} \times \frac{30}{15}
\]

\[
\therefore \quad \frac{E_{b2}}{E_{b1}} = 0.25
\]

\[
\begin{align*}
E_{b1} & = 220 - 30(0.4 + 0.1) = 205 \text{ V} \\
E_{b2} & = 51.25 \text{ V}
\end{align*}
\]

\[
\begin{align*}
E_{b2} & = V - I_{a2}(R_a + R_{se} + R_{ext}) \\
51.25 & = 220 - 15(0.4 + 0.1 + R_{ext}) \\
\Rightarrow \quad R_{ext} & = 10.75 \text{ Ω}
\end{align*}
\]

MADE EASY Students
Top in ESE-2016
84% Selections in ESE 2016

4 Streams, 4 Toppers all 4 MADE EASY Students

Civil
Jatin Kumar

Mechanical
M. Idul Ahmad

Electrical
Gaurav

Electronics & Tel.
Naveen Sharma

39 Selections in Top 10
76 Selections in Top 20
505 Selections out of total 604 vacancies

MADE EASY Selections
Out of Vacancies
Percentage

Civil
10
182
225
81%

Mechanical
9
159
179
89%

Electrical
10
86
106
81%

Electronics & Tel.
10
78
94
83%

“2 out of every 3 selected students, are from CLASSROOM COURSE”

Detailed results are available at: www.madeeasy.in
Q.27 Only one of the real roots of \(f(x) = x^6 - x - 1 \) lies in the interval \(1 \leq x \leq 2 \) and bisection method is used to find its value. For achieving an accuracy of 0.001, the required minimum number of iterations is ________ . (Give the answer up to two decimal places.)

Ans. (10)

\[
\begin{align*}
 f(x) &= x^6 - x - 1 \\
 a &= 1 \quad b = 2 \quad \epsilon = 0.01 = 10^{-3} \\
\end{align*}
\]

The minimum number of iterations by Bisection method is given by

\[
\frac{|b - a|}{2^n} < \epsilon \\
\frac{2 - 1}{2^n} < 10^{-3} \\
\frac{1}{2^n} < \frac{1}{10^3} \\
2^n > 10^3 \\
2^n > 1000 \\
\frac{n}{n^2} > \ln(1000) \\
n > \frac{\ln(1000)}{\ln(2)} \\
n > 9.96 \\
n = 10
\]

Q.28 The transfer function of the system \(Y(s)/U(s) \) whose state-space equations are given below is:

\[
\begin{align*}
\begin{bmatrix}
\dot{x}_1(t) \\
\dot{x}_2(t)
\end{bmatrix} &= \begin{bmatrix} 1 & 2 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\
x_2(t) \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \end{bmatrix} u(t) \\
y(t) &= \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\
x_2(t) \end{bmatrix}
\end{align*}
\]

(a) \(\frac{(s + 2)}{(s^2 - 2s - 2)} \)
(b) \(\frac{(s - 2)}{(s^2 + s - 4)} \)
(c) \(\frac{(s - 4)}{(s^2 + s - 4)} \)
(d) \(\frac{(s + 4)}{(s^2 - s - 4)} \)

Ans. (d)

Given,

\[
\begin{align*}
\dot{X} &= \begin{bmatrix} 1 & 2 \\ 2 & 0 \end{bmatrix} X + \begin{bmatrix} 1 \\ 2 \end{bmatrix} u \\
Y &= \begin{bmatrix} 1 & 0 \end{bmatrix} X
\end{align*}
\]
Transfer function = \(C(sI - A)^{-1} B + D \)

\[
(sI - A)^{-1} = \begin{bmatrix}
\frac{s}{s^2 - s - 4} & \frac{2}{s^2 - s - 4} \\
\frac{2}{s^2 - s - 4} & \frac{s - 1}{s^2 - s - 4}
\end{bmatrix}
\]

\[(sI - A)^{-1} \cdot B = \begin{bmatrix}
\frac{s + 4}{s^2 - s - 4} \\
\frac{s - 1}{s^2 - s - 4}
\end{bmatrix}
\]

\[
\frac{Y(s)}{U(s)} = C(sI - A)^{-1} \cdot B = \frac{s + 4}{s^2 - s - 4}
\]

Q.29 The circuit shown in the figure uses matched transistor with a thermal voltage \(V_T = 25 \text{ mV} \). The base currents of the transistors are negligible. The value of the resistance \(R \) in \(\text{k}\Omega \) that is required to provide 1 \(\mu \text{A} \) bias current for the differential amplifier block shown is ________ . (Give the answer up to one decimal place.)

Ans. (172.69)
\[V_{BE1} = V_{BE2} + I_o R, \]
\[I_o R = V_{BE1} - V_{BE2} \]
\[= V_t \ln \left(\frac{I_R}{I_3} \right) - V_t \ln \left(\frac{I_o}{I_3} \right) \]

Where

\[I_s \rightarrow \text{Reverse saturation current} \]
\[R = \frac{V_t \ln \left(\frac{I_R}{I_0} \right)}{I_0} \]
\[= \frac{0.025 \ln \left(\frac{1 \text{mA}}{1 \mu A} \right)}{1 \mu A} = \frac{0.025 \ln (10^3)}{1 \mu A} = 172.69 \text{ k}\Omega \]

Q.30 Two parallel connected, three-phase, 50 Hz, 11 kV, star-connected synchronous machines A and B, are operating as synchronous condensers. They together supply 50 MVAR to a 11 kV grid. Current supplied by both the machines are equal. Synchronous reactances of machine A and machine B are 1 Ω and 3 Ω, respectively. Assuming the magnetic circuit to be linear, the ratio of excitation current of machine A to that of machine B is _________ . (Give the answer up to two decimal places)

Ans. (0.745)

Synchronous machine A : 11 kV, 50 Hz, Y connected, \(X_s = 1 \) Ω
Synchronous machine B : 11 kV, 50 Hz, Y connected, \(X_s = 3 \) Ω

Given both supplying only reactive power 50 MVAR to 11 kV grid equally

\[\therefore \quad Q_A = \sqrt{3} V I_A \sin \phi = 25 \text{ MVAR} \]
\[Q_B = \sqrt{3} V I_B \sin \phi = 25 \text{ MVAR} \]

\[\therefore \quad I_A = \frac{25 \times 10^6}{\sqrt{3} \times 11 \times 10^3} = 1312.2 \text{ A} \]

\[\therefore \quad I_B = 1312.2 \text{ A} \]
\[E_A = V - jI_A X_s \]
\[= \frac{11 \times 10^3}{\sqrt{3}} - j1312.2 \angle 90 \times 1 \]

\[E_B = V - jI_B X_s \]
\[= \frac{11 \times 10^3}{\sqrt{3}} - j1312.2 \angle 90 \times 3 \]
Given magnetic circuit to be linear
\[E \propto I_f \]
\[\therefore \quad \frac{I_{A}}{I_{B}} = \frac{E_{A}}{E_{B}} \]
\[E_{A} = 7663.05 \text{ V} \]
\[E_{B} = 10287.45 \text{ V} \]
\[\therefore \quad \text{Ratio of excitation current of machine A to machine B} \]
\[\frac{E_{A}}{E_{B}} = 0.745 \]

Q.31 Consider a causal and stable LTI system with rational transfer function $H(z)$, whose corresponding impulse response begins at $n = 0$. Furthermore, $H(1) = \frac{5}{4}$. The poles of $H(z)$ are $p_k = \frac{1}{\sqrt{2}} \exp\left(\frac{(2k-1)\pi}{4}\right)$ for $k = 1, 2, 3, 4$. The zeros of $H(z)$ are all at $z = 0$.

Let $g[n] = j^n h[n]$. The value of $g[8]$ equals ______. (Give the answer up to three decimal places.)

Ans. (0.097)

Pole location are given as,
\[z = \frac{1}{\sqrt{2}} e^{\frac{(2k-1)\pi}{4}} ; \quad K = 1, 2, 3, 4 \]
\[z_1 = \frac{1}{\sqrt{2}} e^{i\pi/4} = \frac{1}{2}(1 + j) \]
\[z_2 = \frac{1}{\sqrt{2}} e^{i3\pi/4} = \frac{1}{2}[-1 + j] \]
\[z_3 = \frac{1}{\sqrt{2}} e^{i5\pi/4} = \frac{1}{2}[-1 - j] \]
\[z_4 = \frac{1}{\sqrt{2}} e^{i7\pi/4} = \frac{1}{2}[1 - j] \]

Now,
\[H(z) = \frac{K \cdot z^4}{(z-z_1)(z-z_2)(z-z_3)(z-z_4)} \quad ... (1) \]

[As $h(n)$ is causal & it starts from $n = 0$, so numerator will have same order as denominator is having.]
By solving expression (1),

\[H(z) = \frac{Kz^4}{z^4 + \frac{1}{4}} \]

...(2)

Given that, \[H(1) = \frac{5}{4} \]

From equation (2), \[H(1) = \frac{K}{1 + \frac{1}{4}} \Rightarrow \frac{5}{4} = \frac{5}{4} \]

\[\Rightarrow K = \frac{25}{16} \]

\[H(z) = \frac{25}{16} \frac{z^4}{z^4 + \frac{1}{4}} \]

By using division rule,

\[H(z) = \frac{25}{16} \left(1 - \frac{1}{4} z^{-4} + \frac{1}{16} z^{-8} + \ldots \right) \]

Thus, \[h(n) = \frac{1}{16} \times \frac{25}{16} = 0.097 \]

It is given that, \[g(n) = j^n h(n) \]

\[g(8) = j^8 h(8) = h(8) \]

\[\Rightarrow g(8) = h(8) = 0.097 \]

Q.32 The logical gate implemented using the circuit shown below where, \(V_1 \) and \(V_2 \) are inputs (with 0 V as digital 0 and 5 V as digital 1) and \(V_{OUT} \) is the output, is

(a) NOT \hspace{1cm} (b) NOR \hspace{1cm} (c) NAND \hspace{1cm} (d) XOR
Ans. (b)

\[V_1 = \text{high} \ 5 \text{ V} \ Q_1 \ \text{on} \ V_{out} = 0 \]
\[V_2 = \text{high} \ 5 \text{ V} \ Q_2 \ \text{on} \ V_{out} = 0 \]

Thus when any \(V_1 \) or \(V_2 \) is high then \(V_{out} = 0 \)

\[
\begin{array}{ccc}
V_1 & V_2 & V_{out} \\
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
1 & 1 & 0 \\
\end{array}
\]

Thus it is a NOR gate.

Q.33 The load shown in the figure is supplied by a 400 V (line-to-line), 3-phase source (RYB sequence). The load is balanced and inductive, drawing 3464 VA. When the switch \(S \) is in position \(N \), the three watt-meters \(W_1, W_2 \) and \(W_3 \) read 577.35 W each. If the switch is moved to position \(Y \), the readings of the wattmeters in watts will be:

(a) \(W_1 = 1732 \) and \(W_2 = W_3 = 0 \)
(b) \(W_1 = 0, \ W_2 = 1732 \) and \(W_3 = 0 \)
(c) \(W_1 = 866 \) and \(W_2 = 0, \ W_3 = 866 \)
(d) \(W_1 = W_2 = 0 \) and \(W_3 = 1732 \)
Ans. (d)

When switch is on Neutral side

\[W = W_1 + W_2 + W_3 \]
\[= 577.35 + 577.35 + 577.35 = 1732 \text{ Watts} \]

VA load = 3464 = 3 \(V_{\text{ph}} \cdot I_{\text{ph}} \)

⇒ \(V_{\text{ph}} \cdot I_{\text{ph}} = 1154.66 \)

Each W meter reading = \(V_{\text{RN}} \cdot I_R \cdot \cos(\angle V_{\text{RN}} \& I_R) \)
\[577.35 = V_{\text{ph}} \cdot I_{\text{ph}} \cdot \cos(\phi) \]

⇒ \[\cos(\phi) = \frac{577.35}{1154.66} = 0.5 \]

\[\phi = \cos^{-1}(0.5) \]

⇒ \[\phi = 60^\circ \]

When switch is on Y-phase side

\[W_1 = V_{\text{RY}} \cdot I_R \cdot \cos(\angle V_{\text{RY}} \& I_R) \]
\[= \sqrt{3} \cdot V_{\text{ph}} \cdot I_{\text{ph}} \cdot \cos(30^\circ + \phi) \]
\[W_1 = \sqrt{3} \times 1154.66 \times \cos(30^\circ + 60^\circ) = 0 \text{ Watt} \]

\[W_2 = V_{\text{BY}} \cdot I_R \cdot \cos(\angle V_{\text{BY}} \& I_R) \]
\[= \sqrt{3} \cdot V_{\text{ph}} \cdot I_{\text{ph}} \cdot \cos(30^\circ - \phi) \]
\[W_2 = \sqrt{3} \times 1154.66 \times \cos(30^\circ - 60^\circ) = 1732 \text{ Watts} \]

\[W_3 = 0 \]
\[W_1 = 0 \]
\[W_3 = 1732 \text{ Watts} \]
Q.34 In the system whose signal flow graph is shown in figure, \(U_1(s) \) and \(U_2(s) \) are inputs.

The transfer function \(\frac{Y(s)}{U_1(s)} \) is

(a) \(\frac{k_1}{JLs^2 + JRS + k_1k_2} \)

(b) \(\frac{k_1}{JLs^2 - JRS - k_1k_2} \)

(c) \(\frac{k_1 - U_2(R + sL)}{JLs^2 + (JR - U_2L)s + k_1k_2 - U_2R} \)

(d) \(\frac{k_1 - U_2(sL - R)}{JLs^2 - (JR + U_2L)s - k_1k_2 + U_2R} \)

Ans. (a)

Transfer function, \(\frac{Y(s)}{U_1(s)} = \frac{\frac{K_1}{LJs^2} [1]}{1 - \left(-\frac{R}{L} - \frac{K_1K_2}{LJs^2} \right)} = \frac{K_1}{LJs^2 + RJ + K_1K_2} \)

Q.35 The switch in the figure below was closed for a long time. It is opened at \(t = 0 \). The current in the inductor of 2 H for \(t \geq 0 \), is

(a) \(2.5 e^{-4t} \)

(b) \(5 e^{4t} \)

(c) \(2.5 e^{-0.25t} \)

(d) \(5 e^{-0.25t} \)
An Initiative of

With

Free Test Series

G.S. Exclusive Batches for Civil Services (Pre) 2017
Under the guidance of Mr. B. Singh; CMD, MADE EASY Group

Launches

Batches starting from
20th Feb, 2017 (5:30 PM to 9:30 PM)

Key Features:
+ 90 Days course with 3 to 4 hrs classes per day
+ Classes to be taken by very renowned faculty group of 6 to 7 experts
+ Concise in duration but comprehensive in discussion
+ Targeted, focused and current based approach
+ Affordable fee and focus on individual support
+ Provision of regular interaction with faculty, through MADE EASY Online social learning platform
+ Regular assessment of performance through well designed class tests

Fee: Rs. 31,500/-
Special Discount of Rs. 5000/- for MADE EASY Students

Admission Open

Admission Office:
44-A/1, Kalu Sarai,
New Delhi-110016

8800338066
Ans. (a)

From the given circuit, consider the following circuit diagram,

After rearrangement,

for $t \geq 0$;

$$I_0 = i(0^-) = 2.5 \text{ A}$$

we can write,

$$i(t) = I_0 e^{-\frac{rt}{L}}$$

$$i(t) = 2.5 e^{-4t} \text{ A}$$

Q.36 The magnitude of magnetic flux density (B) in micro Teslas (μT), at the centre of a loop of wire wound as a regular hexagon of side length 1 m carrying a current ($I = 1 \text{ A}$) and placed in vacuum as shown in the figure is _______. (Give the answer up to two decimal places.)

Ans. (0.69)

$$i = 1 \text{ A}$$
Here B at point P is

$$B = \frac{\mu_0 I}{4\pi d} (\sin \theta_1 + \sin \theta_2)$$

For each segment of hexagon (1, 2, 3, 4, 5, 6)

$$\Rightarrow \quad B = \frac{6\mu_0 I}{4\pi d} (\sin \theta_1 + \sin \theta_2)$$

Here, $$d = \frac{\sqrt{3}}{2} I$$ (Where $I = 1$ m)

and $$\theta_1 = \theta_2 = 30^\circ$$

$$\Rightarrow \quad B = \frac{6 \times \mu_0 I}{4\pi \sqrt{3}} \frac{(\sin 30^\circ + \sin 30^\circ)}{2} = \frac{4\pi \times 10^{-7} \times 6 \times 1}{4\pi \times \sqrt{3}}$$

$$= \frac{12}{\sqrt{3}} \times 10^{-7} = \frac{1.20}{\sqrt{3}} \times 10^{-6} \ T$$

$$B = 0.69 \ \mu T$$

Q.37 The bus admittance matrix for a power system network is

$$\begin{bmatrix}
-j39.9 & j20 & j20 \\
-j20 & -j39.9 & j20 \\
j20 & j20 & -j39.9 \\
\end{bmatrix} \text{ p.u.}$$

There is a transmission line, connected between buses 1 and 3, which is represented by the circuit shown in figure.

If this transmission line is removed from service, what is the modified bus admittance matrix?
\[
\begin{bmatrix}
-j19.9 & j20 & 0 \\
 j20 & -j39.9 & j20 \\
 0 & j20 & -j19.9 \\
\end{bmatrix}
\text{ p.u.}
\]
\[
\begin{bmatrix}
-j39.95 & j20 & 0 \\
 j20 & -j39.9 & j20 \\
 0 & j20 & -j39.95 \\
\end{bmatrix}
\text{ p.u.}
\]
\[
\begin{bmatrix}
-j19.95 & j20 & 0 \\
 j20 & -j39.9 & j20 \\
 0 & j20 & -j19.95 \\
\end{bmatrix}
\text{ p.u.}
\]
\[
\begin{bmatrix}
-j19.95 & j20 & j20 \\
 j20 & -j39.9 & j20 \\
 j20 & j20 & -j19.95 \\
\end{bmatrix}
\text{ p.u.}
\]

Ans. (c)

\[
Y_{bus} = \begin{bmatrix}
-j39.9 & j20 & j20 \\
 j20 & -j39.9 & j20 \\
 j20 & j20 & -j39.9 \\
\end{bmatrix}
\]

Reactance is eliminated in between Bus 1 and 3.

\[
y_{11\text{ (new)}} = y_{11\text{ (old)}} + j \frac{1}{0.05} \\
= -j \ 39.9 + j \ 20 \\
= -j \ 19.99
\]

\[
y_{33\text{ (new)}} = y_{33\text{ (old)}} + j \frac{1}{0.05} \\
= -j39.9 + j20 = -j19.99
\]

\[
y_{13\text{ (new)}} = y_{13\text{ (old)}} + j \frac{1}{0.05} \\
= j20 - j20 = 0
\]

\[
y_{31\text{ (new)}} = y_{31\text{ (old)}} - j \frac{1}{0.05} \\
= j20 - j20 = 0
\]

So, modified admittance matrix.

\[
\begin{bmatrix}
-j19.95 & j20 & 0 \\
 j20 & j39.9 & j20 \\
 0 & j20 & -j19.95 \\
\end{bmatrix}
\text{ p.u.}
\]
Q.38 A 375 W, 230 V, 50 Hz capacitor start single-phase induction motor has the following constants for the main the auxiliary windings (at starting): \(Z_m = (12.50 + j15.75) \Omega \) (main winding). \(Z_a = (24.50 + j12.75) \Omega \) (auxiliary winding). Neglecting the magnetizing branch, the value of the capacitance (in \(\mu \text{F} \)) to be added in series with the auxiliary winding to obtain maximum torque at starting is ________.

Ans. (98.93)

\[Z_a = (24.5 + j12.75) \Omega \]

Let \(X_c \) be the reactance of the capacitor connected in the auxiliary winding.

\[Z_a = 24.5 + j12.75 - jX_c \]

Let \(Z_a = 24.5 - jX_a \)

where \(X_a = X_c - 12.75 \)

Given \(Z_m = 12.5 + j15.75 = 20.1 \angle 51.56^\circ \)

\[\therefore \text{Current in main winding (} l_m \text{) lags } V \text{ by } 51.56^\circ \]

To obtain maximum torque current in both windings has to be in quadrature with each other. (Angle between both currents should be 90°)

\[\therefore \phi_a = 90^\circ - 51.56^\circ = 38.44^\circ \]

\[\therefore \text{For auxiliary winding} \]

\[\tan \phi_a = \frac{X_a}{R} \]

\[\therefore \tan(38.44^\circ) = \frac{X_a}{24.5} \]

\[\therefore X_a = 19.44 \ \Omega \]

\[\therefore X_c - 12.75 = 19.44 \]

\[\therefore X_c = 32.19 \ \Omega \]

Capacitive Reactance \(X_c = \frac{1}{2\pi f C} \)

\[\therefore C = \frac{1}{2\pi f X_c} = \frac{1}{2 \times 3.14 \times 50 \times 32.19} = 98.93 \ \mu \text{F} \]
Q.39 For a system having transfer function \(G(s) = \frac{-s + 1}{s + 1} \), a unit step input is applied at time \(t = 0 \). The value of the response of the system at \(t = 1.5 \) sec (rounded off to three decimal places) is ________.

Ans. (0.554)

\[G(s) = \frac{-s + 1}{s + 1} \]

System output,

\[Y(s) = G(s) \cdot \frac{1}{s} = \frac{-s + 1}{s + 1} \cdot \frac{1}{s} = \frac{1}{s} - \frac{2}{s + 1} \]

\[y(t) = u(t) - 2e^{-t}u(t) \]

\[y(1.5) = 1 - 2e^{-1.5} \]

\[= 1 - 0.446 = 0.554 \]

Q.40 Let the signal \(x(t) = \sum_{k=-\infty}^{\infty} (-1)^k \delta \left(t - \frac{k}{2000}\right) \) be passed through an LTI system with frequency response \(H(\omega) \), as given in the figure below.

\[H(\omega) \]

\[\begin{array}{c}
-5000\pi \\
\hline
1 \\
\hline
5000\pi \\
\end{array} \]

The Fourier series representation of the output is given as

(a) \(4000 + 4000 \cos(2000\pi t) + 4000 \cos(4000\pi t) \)

(b) \(2000 + 2000 \cos(2000\pi t) + 2000 \cos(4000\pi t) \)

(c) \(4000 \cos(2000\pi t) \)

(d) \(2000 \cos(2000\pi t) \)
Exclusive Batches for
G.S. & Engineering Aptitude
ESE 2018 Prelims : Paper - I

Syllabus Covered:

1. Current issues of national and international importance relating to social, economic and industrial development.
3. Standards and Quality practices in production, construction, maintenance and services.
7. Information and Communication Technologies (ICT) based tools and their applications in Engineering such as networking, e-governance and technology based education.
8. Ethics and values in Engineering profession.

Batches Starting at Delhi & Noida Centres

<table>
<thead>
<tr>
<th>Venue</th>
<th>Batch Type</th>
<th>Batch Commencement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noida</td>
<td>Weekend</td>
<td>25th Feb, 2017</td>
</tr>
<tr>
<td>Delhi</td>
<td>Weekend</td>
<td>25th Feb, 2017</td>
</tr>
<tr>
<td>Delhi</td>
<td>Regular</td>
<td>20th Feb, 2017</td>
</tr>
</tbody>
</table>

Admission Open

www.madeeasy.in
Ans. (c)

\[x(t) = \sum_{K = -\infty}^{\infty} (-1)^K \delta(t - \frac{K}{2000}) \]

\[= \sum_{K = -\infty}^{\infty} (-1)^K \delta(t - KT) \]

where,

\[T = \frac{1}{2000} \]

\[\cdots \quad -T \quad 0 \quad T \quad 2T \quad \cdots \quad 1 \]

Time period:

\[T_0 = 2T = \frac{1}{1000} \]

\[\omega_b = \frac{2\pi}{10} = 2000\pi \text{ rad} \]

Since, \(x(t) \) is even-half wave symmetric. So, its expansion will contain only odd harmonics. Therefore, coefficient of 2nd harmonic is

\[a_2 = \frac{2}{T_0} \int_{-T_0/2}^{T_0/2} x(t) \cos 2\omega_0 t \, dt \]

\[= \frac{4}{T_0} \int_{0}^{T_0/2} \delta(t) \cdot \cos 2\omega_0 t \, dt \]

\[= \frac{4}{T_0} \int_{0}^{T_0/2} \delta(t) \cdot \cos 0 \, dt \]

\[= \frac{4}{T_0} \left[\int_{0}^{T_0/2} \delta(t) \, dt \right] = \frac{4}{T_0} = 4000 \]

Now, frequency components available in expansion are

\[\omega_0, \ 3\omega_0, \ldots \ldots \]

\[2000\pi, \ 6000\pi, \ldots \ldots \]

As, LTI system given in the question will pass upto 5000\(\pi \) rad/sec frequency component of input. So, output will have only one component of frequency 2000\(\pi \) rad/sec.

Thus,

\[y(t) = \text{expansion of output} \]

\[= a_2 \cos 2\omega_0 t \]

\[= 4000 \cos 2000\pi t \]

End of Solution
Q.41 The figure shows the single line diagram of a power system with a double circuit transmission line. The expression for electrical power is $1.5 \sin \delta$, where δ is the rotor angle. The system is operating at the stable equilibrium point with mechanical power equal to 1 pu. If one of the transmission line circuits is removed the maximum value of δ, as the rotor swings is 1.221 radian. If the expression for electrical power with one transmission line circuit removed is $P_{\text{max}} \sin \delta$, the value of P_{max} in pu is _______. (Give the answer up to three decimal places.)

Ans. (1.064)

Using equal area criteria:

$$A_1 = A_2$$

$$\int_{\delta_0}^{\delta_2} (P_{m0} - P_{\text{max}_1} \sin \delta) d\delta = \int_{\delta_0}^{\delta_2} (P_{\text{max}_1} \sin \delta - P_{m0}) d\delta$$

By solving above integration,

$$P_{\text{max}_1} = \frac{P_{m0}(\delta_2 - \delta_0)}{\cos \delta_0 - \cos \delta_2}$$

Given data:

- $P_{m0} = 1$ pu
- $P_e = 1.5 \sin(\delta_0) = P_{m0} = 1$ pu
- $\delta_0 = 41.8^\circ = 0.7295 \text{ rad}$
- $\delta_2 = 1.221 \text{ rad} = 69.95^\circ$

substitute above values in above equation

$$P_{\text{max}_1} = \frac{1(1.221 - 0.7295)}{\cos 41.8^\circ - \cos 69.95^\circ}$$

$$P_{\text{max}_1} = 1.22$$

End of Solution
Q.42 The output expression for the Karnaugh map shown below is

\[
\begin{array}{cccc}
AB & CD & 00 & 01 & 11 & 10 \\
00 & 0 & 0 & 0 & 0 & \\
01 & 1 & 0 & 0 & 1 & \\
11 & 1 & 0 & 1 & 1 & \\
10 & 0 & 0 & 0 & 0 & \\
\end{array}
\]

(a) \(BD + BCD\) \hspace{1cm} (b) \(B\bar{D} + AB\)
(c) \(\bar{B}D + ABC\) \hspace{1cm} (d) \(B\bar{D} + ABC\)

Ans. (d)

\[
\begin{array}{ccc}
\bar{C}D & \bar{C}D & CD & C\bar{D} \\
\bar{A}B & 1 & 1 & \\
\bar{A}B & 1 & 1 & 1 \\
\bar{A}\bar{B} & & & \\
\end{array}
\]

\[ABC + B\bar{D}\]

Q.43 Let a causal LTI system be characterized by the following differential equation, with initial rest condition

\[
\frac{d^2y}{dt^2} + 7\frac{dy}{dt} + 10y(t) = 4x(t) + 5\frac{dx(t)}{dt}
\]

Where, \(x(t)\) and \(y(t)\) are the input and output respectively. The impulse response of the system is \((u(t)\) is the unit step function)

(a) \(2e^{-3t}u(t) - 7e^{-5t}u(t)\)
(b) \(-2e^{-3t}u(t) + 7e^{-5t}u(t)\)
(c) \(7e^{-2t}u(t) - 2e^{-5t}u(t)\)
(d) \(-7e^{-2t}u(t) + 2e^{-5t}u(t)\)

Ans. (b)

\[
\frac{d^2y}{dt^2} + 7\frac{dy}{dt} + 10y = 4x + 5\frac{dx}{dt}
\]

\[(s^2 + 7s + 10) \ Y(s) = (4 + 5s) \ X(s)\]

\[
\frac{Y(s)}{X(s)} = \frac{5s + 4}{s^2 + 7s + 10}
\]

Impulse response = \(L^{-1}\) (Transfer function)

\[
= L^{-1}\left[\frac{5s + 4}{(s + 2)(s + 5)}\right] = L^{-1}\left[\frac{2}{s + 2} + \frac{7}{s + 5}\right]
\]

\[= -2e^{-2t}u(t) + 7e^{-5t}u(t)\]
Q.44 A three-phase, three winding ∆/Δ/Y (1.1 kV/6.6 kV/400 V) transformer is energized from AC mains at the 1.1 kV side. It supplies 900 kVA load at 0.8 power factor lag from the 6.6 kV winding and 300 kVA load at 0.6 power factor lag from the 400 V winding. The RMS line current in ampere drawn by the 1.1 kV winding from the mains is _______.
(Give the answer up to one decimal place.)

Ans. (560.3)
Load on 6.6 kV winding = 900 kVA @ 0.8 pf lag

\[I_2 = \frac{900 \times 10^3}{\sqrt{3} \times 6.6 \times 10^3} \Rightarrow 78.73 \angle -36.86^\circ \text{ A} \]

Transformation Ratio \[k = \frac{1.1}{6.6} = \frac{1}{6} \]

\[I'_2 = \frac{I_2}{k} = 472.4 \angle -36.86^\circ \text{A} \]

Load on 400 V winding = 300 kVA @ 0.6 pf

\[I_3 = \frac{300 \times 10^3}{\sqrt{3} \times 400} \Rightarrow 433.025 \angle -53.13^\circ \text{ A} \]

Transformation ratio \[= \frac{1.1 \times 1000}{400 \sqrt{3}} = 4.76 \]

\[I'_3 = \frac{I_3}{k} = \frac{433.025}{4.76} = 90.97 \angle -53.13^\circ \]

So line value of current \[\sqrt{3} \times 90.97 \angle -53.13^\circ \]

\[= 157.56 \angle -53.13^\circ \]

Current drawn by 1.1 kV winding will be

\[I_1 = I'_2 + I'_3 = 472.4 \angle -36.86^\circ + 157.56 \angle -53.13^\circ \]

\[= 377.96 - j283.37 + 94.53 - j/126.04 \]

\[= 472.49 - j409.41 = 625.19 \angle -40.9^\circ \text{ A} \]
Q.45 Consider the differential equation \((t^2 - 81) \frac{dy}{dt} + 5t y = \sin(t) \) with \(y(1) = 2\pi \). There exists a unique solution for this differential equation when \(t \) belongs to the interval
(a) \((-2, 2)\)
(b) \((-10, 10)\)
(c) \((-10, 2)\)
(d) \((0, 10)\)

 Ans. \((a)\)

The differential equation

\[(t^2 - 81) \frac{dy}{dt} + 5t y = \sin t \]

\[
\frac{dy}{dt} + \frac{5t}{t^2 - 81} y = \frac{\sin t}{t^2 - 81}
\]

\[
P = \frac{5t}{t^2 - 81}
\]

\[
Q = \frac{\sin t}{t^2 - 81}
\]

\[
I.F = e^{\int P \, dt} = e^{\int \frac{5t}{t^2 - 81} \, dt}
\]

\[
= e^{\int \frac{5t}{t^2 - 81} \, dt} = e^{\int \frac{5t}{t^2 - 81} \, dt}
\]

\[
= e^{\ln(t^2 - 81)^{5/2}} = (t^2 - 81)^{5/2}
\]

Solution is

\[
y(t^2 - 81)^{5/2} = \int \frac{\sin t}{t^2 - 81} \cdot (t^2 - 81)^{5/2} \, dt
\]

\[
y = \frac{\int (\sin t)(t^2 - 81)^{3/2} \, dt}{(t^2 - 81)^{5/2}} + \frac{C}{(t^2 - 81)^{5/2}}
\]

The solution exists for \(t \neq -9 \).

\(t \neq +9 \)

Hence option \((a)\) is correct.

Because the remaining option are involving either 9 or (-9).
Q.46 A separately excited DC generator supplies 150 A to a 145 V DC grid. The generator is running at 800 RPM. The armature resistance is 0.1 Ω. If the speed of the generator is increased to 1000 RPM, the current in amperes supplied by the generator to the DC grid is ________. (Give the answer up to one decimal place.)

Ans. (187.5)

![Diagram](attachment://diagram.png)

Load Resistance $R_L = \frac{145}{150} = 0.97 \, \Omega$

\[E_{g1} = V + I_a R_a = 145 + 150 \times (0.1) \]

\[\therefore \quad E_{g1} = 160 \, V \]

\[\therefore \quad \frac{E_{g2}}{E_{g1}} = \frac{N_2}{N_1} \]

\[\Rightarrow \quad E_{g2} = \frac{1000}{800} \times 160 = 200 \, V \]

New load current supplied to grid is

\[I = \frac{E_{g2}}{R_a + R_L} = \frac{200}{0.1 + 0.97} = 187.5 \, A \]
Q.47 In the circuit shown below, the maximum power transferred to the resistor R is \[\underline{\text{3.025}} \text{ W.} \]

Ans. \text{(3.025)}

To get R_{th} and V_{th}, consider the following steps.

Case-1: For R_{th}

Applying KCL at node,

\[\frac{V_{m} - 5}{5} + \frac{V_{m} + 16}{5} = 0 \]

\[2
\]

\[V_{th} = -11 \]

\[V_{in} = -5.5 \text{ V} \]

Maximum power transferred,

\[P_{max} = \frac{V_{th}^2}{4R_{L}} = 3.025 \text{ W} \]
Two passive two-port networks are connected in cascade as shown in the figure. A voltage source is connected at port 1.

\[
\begin{align*}
&V_1 = A_1 V_2 + B_1 I_2 \\
&I_1 = C_1 V_2 + D_1 I_2 \\
&V_2 = A_2 V_3 + B_2 I_3 \\
&I_2 = C_2 V_3 + D_2 I_3
\end{align*}
\]

Given, \(A_1, B_1, C_1, D_1, A_2, B_2, C_2 \) and \(D_2 \) are the generalized circuit constants. If the Thevenin equivalent circuit at port 3 consists of a voltage source \(V_T \) and an impedance \(Z_T \), connected in series, then

(a) \[V_T = \frac{V_1}{A_1 A_2} \] \[Z_T = \frac{A_2 B_2 + B_1 D_2}{A_1 A_2} \]

(b) \[V_T = \frac{V_1}{A_1 A_2 + B_1 C_2} \] \[Z_T = \frac{A_2 B_2 + B_1 D_2}{A_1 A_2 + B_1 C_2} \]

(c) \[V_T = \frac{V_1}{A_1 + A_2} \] \[Z_T = \frac{A_2 B_2 + B_1 D_2}{A_1 + A_2} \]

(d) \[V_T = \frac{V_1}{A_1 A_2 + B_1 C_2} \] \[Z_T = \frac{A_2 B_2 + B_1 D_2}{A_1 A_2 + B_1 C_2} \]

Ans. (d)

For two port networks we can write,

\[
\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} A_1 & B_1 \\ C_1 & D_1 \end{bmatrix} \begin{bmatrix} A_2 & B_2 \\ C_2 & D_2 \end{bmatrix}
\]

or

\[
\begin{align*}
A &= A_1 A_2 + B_1 C_2 & \text{...(i)} \\
B &= A_1 B_2 + B_1 D_2 & \text{...(ii)} \\
V_i &= A V_2 - B I_2 & \text{...(iii)}
\end{align*}
\]

To get, \(V_T (I_2 = 0) \); from equation (iii)

\[V_2 = V_T = \frac{V_1}{A} = \frac{V_1}{A_1 A_2 + B_1 C_2} \]

To get \(Z_T (V_1 = 0) \); from equation (iii),

\[
\begin{align*}
V_1 &= A V_2 - B I_2 \\
0 &= A V_2 - B I_2 \\
Z_T &= \frac{V_2}{I_2} = \frac{B}{A} = \frac{A_2 B_2 + B_1 D_2}{A_1 A_2 + B_1 C_2}
\end{align*}
\]

End of Solution
Q.49 The input voltage V_{dc} of the buck-boost converter shown below varies from 32 V to 72 V. Assume that all components are ideal, inductor current is continuous and output voltage is ripple free. The range of duty ratio D of the converter for which the magnitude of the steady-state output voltage remains constant at 48 V is

(a) $\frac{2}{5} \leq D \leq \frac{3}{5}$
(b) $\frac{2}{3} \leq D \leq \frac{3}{4}$
(c) $0 \leq D \leq 1$
(d) $\frac{1}{3} \leq D \leq \frac{2}{3}$

Ans. (a)

$$V_o = \frac{\alpha V_0}{1 - \alpha}$$

When $V_+ = 32$ V and $V_0 = 48$ V

$\alpha = \frac{3}{5}$

When $V_+ = 72$ V and $V_0 = 48$ V

$\alpha = \frac{2}{5}$

$\frac{2}{5} \leq \alpha \leq \frac{3}{5}$

Q.50 The figure below shown an uncontrolled diode bridge rectifier supplied from a 220 V, 50 Hz 1-phase ac source. The load draws a constant current $I_0 = 14$ A. The conduction angle of the diode D_1 in degrees (rounded off to two decimal places) is ________ .
Ans. \((224.17) \)

Average reduction in output voltage due to source inductance = \(\Delta V_{d0} \)

\[
\Delta V_{d0} = 4 \cdot I_L \cdot I_o
\]

\[
= 4 \times 50 \times (10.10^{-3}) \times 14
\]

\[
\Delta V_{d0} = 28 \text{ V}
\]

\[
\Delta V_{d0} = \frac{V_m}{\pi} \left[(\cos \alpha - \cos (\alpha + \mu)) \right]
\]

\[
\alpha = 0
\]

\[
28 = \frac{V_m}{\pi} \left[1 - \cos \mu \right]
\]

\[
28 = \frac{220 \sqrt{2}}{\pi} \left[1 - \cos \mu \right]
\]

\[
0.282 = 1 - \cos \mu
\]

\[
\cos \mu = 0.717
\]

\[
\mu = 44.17
\]

\[
\therefore \text{ Conduction angle of diode} = 180^\circ + 44.17^\circ = 224.17^\circ
\]

Q.51 A load is supplied by a 230 V, 50 Hz source. The active power \(P \) and the reactive power \(Q \) consumed by the load are such that \(1 \text{ kW} \leq P \leq 2 \text{ kW} \) and \(1 \text{ kVAR} \leq Q \leq 2 \text{ kVAR} \). A capacitor connected across the load for power factor correction generates 1 kVAR reactive power. The worst case power factor after power factor correction is

(a) 0.447 lag
(b) 0.707 lag
(c) 0.894 lag
(d) 1

Ans. (b)

Load p.f.

\[
\cos \phi_1 = \cos \left[\tan^{-1} \frac{Q_c}{P} \right] = \cos \left[\tan^{-1} \frac{1}{1} \right]
\]

\[
= 0.707 \text{ lag}
\]

\[
Q_c = P \left[\tan \phi_1 - \tan \phi_2 \right]
\]

\[
1 = 1(\tan \cos^{-1} 0.707 - \tan \phi_2)
\]

\[
\phi_2 = 45^\circ
\]

\[
\Rightarrow \cos \phi_2 = 0.707 \text{ lag}
\]

Q.52 The approximate transfer characteristic for the circuit shown below with an ideal operational amplifier and diode will be

\[V_m \]
\[V_0 \]
\[V_{ss} \]
\[V_A \]
\[V_{in} \]
\[D \]
\[R \]

(a) \[V_0 \]
(b) \[V_0 \]
(c) \[V_0 \]
(d) \[V_0 \]

Ans. (a)

\[V_{in} > 0 \quad V_A = +V_{ss}, \text{ D on, } V_0 = V_{in} \]
\[V_{in} < 0 \quad V_A = -V_{ss}, \text{ D off, } V_0 = 0 \]

End of Solution
Q.53 A function \(f(x) \) is defined as \(f(x) = \begin{cases} e^x & x < 1 \\ \ln x + ax^2 + bx & x \geq 1 \end{cases} \), where \(x \in \mathbb{R} \) which one of the following statements is TRUE?
(a) \(f(x) \) is NOT differentiable at \(x = 1 \) for any values of \(a \) and \(b \).
(b) \(f(x) \) is differentiable at \(x = 1 \) for the unique values of \(a \) and \(b \).
(c) \(f(x) \) is differentiable at \(x = 1 \) for all the values of \(a \) and \(b \) such that \(a + b = e \).
(d) \(f(x) \) is differentiable at \(x = 1 \) for all values of \(a \) and \(b \).

Ans. (a)

\[f(x) = \begin{cases} e^x & x < 1 \\ \ln x + ax^2 + bx & x \geq 1 \end{cases} \]

L.H.D \(= \lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} \)
\[= \lim_{x \to 1} \frac{e^x - (a + b)}{x - 1} = \lim_{x \to 1} \frac{e^x}{1} = e \]

R.H.D \(= \lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} \)
\[= \lim_{x \to 1} \frac{\ln x + ax^2 + bx - a - b}{x - 1} = \lim_{x \to 1} \frac{1 + 2ax + b}{1} = 1 + 2a + b \]

L.H.D \(\neq \) R.H.D.
\[\therefore \quad f(x) \text{ is not derivable at } x = 1 \]

End of Solution

Q.54 Consider the line integral \(I = \int_0^1 (x^2 + iy^2)dx \), where \(z = x + iy \). The line \(c \) is shown in the figure below.

![Diagram showing the line integral](image)

The value of \(I \) is
(a) \(\frac{1}{2}i \)
(b) \(\frac{2}{3}i \)
(c) \(\frac{3}{4}i \)
(d) \(\frac{4}{5}i \)
Ans. (b)
From the diagram C is $y = x$
\[I = \oint_C (x^2 + iy^2) \, dz = \oint_C (x^2 + iy^2)(dx + idy) \]
\[= \oint_C (x^2 + ix^2)(dx + idx) \]
\[= \int x^2 dx + ix^2 dx + ix^2 dx - x^2 dx \]
\[= 2i \int_0^1 x^2 dx = 2i \left(\frac{x^3}{3} \right)_0^1 = \frac{2i}{3} \]

Q.55 The positive, negative and zero sequence reactances of a wye-connected synchronous generator are 0.2 pu, 0.2 pu and 0.1 pu respectively. The generator is on open circuit with a terminal voltage of 1 pu. The minimum value of the inductive reactance, in pu, required to be connected between neutral and ground so that the fault current does not exceed 3.75 pu if a single line to ground fault occurs at the terminals is _______. (assume fault impedance to be zero). (Give the answer up to one decimal place.)

Ans. (#)
\[Z_1 = 0.2 \]
\[Z_2 = 0.2 \]
\[Z_0 = 0.1 \]
\[V_{th} = 1 \]
\[I_f = 3.75 \]

For LG fault:
\[I_f = \frac{3V_{th}}{Z_1 + Z_2 + Z_0 + 3Z_n} \]
\[3.75 = \frac{3 \times 1}{0.2 + 0.2 + 0.1 + 3Z_n} \]
\[Z_n = 0.1 \text{ pu.} \]
GENERAL ABILITY

Q.1 The probability that a \(k \)-digit number does NOT contain the digits 0, 5 or 9 is

(a) \(0.3^k \) \hspace{1cm} (b) \(0.6^k \)
(c) \(0.7^k \) \hspace{1cm} (d) \(0.9^k \)

Ans. (c)

\[\frac{tC}{10^C} = \frac{7^k}{10^k} = 0.7^k \]

Each digit can be filled in 7 ways as 0, 5, and 9 is not allowed, so each of these places can be filled by 1, 2, 3, 4, 6, 7, 8 so required probability is \(\left(\frac{7}{10} \right)^k \) or \(0.7^k \)

Q.2 Find the smallest number \(y \) such that that \(y \times 162 \) is a perfect cube.

(a) 24 \hspace{1cm} (b) 27 \hspace{1cm} (c) 32 \hspace{1cm} (d) 36

Ans. (d)

\[y \times 162 = \text{Perfect cube} \]

Option,
\[y = 24 \Rightarrow 2^3 \times 3 \times (2 \times 81) \neq \text{Not perfect cube} \]
\[y = 27 \Rightarrow 3^3 \times (2 \times 3^3) \neq \text{Not perfect cube} \]
\[y = 32 \Rightarrow 2^5 \times 2 \times 3^4 \neq \text{Not perfect cube} \]
\[y = 36 \Rightarrow 2^2 \times 3^2 \times 2 \times 3^4 = 2^3 \times 3^6 = (2 \times 3^2)^3 \text{ is a perfect cube} \]

Hence the answer is, \(y = 36 \)

Q.3 After Rajendra Chola returned from his voyage to Indonesia, he ________ to visit the temple in Thanjavur.

(a) was wishing \hspace{1cm} (b) is wishing \hspace{1cm} (c) wished \hspace{1cm} (d) had wished

Ans. (c)

Correct option is; Wished

After Rajender Chola returned from his voyage to Indonesia, he wished to visit the temple in Thanjavur.

Both are events of past. Use of past perfect form is unwarranted as it reflects part of past.
Q.4 Research in the workplace reveal that people work for many reasons __________.
(a) money beside (b) beside money
(c) money besides (d) besides money

Ans. (d)
Besides money
Research in the workplace reveals the people works for many reasons besides money.
Besides conveys the meaning of ‘in addition’
Beside means ‘next to’

Q.5 Rahul, Murali, Srinivas and Arul are seated around a square table. Rahul is sitting to the left of Murali. Srinivas is sitting to the right of Arul. Which of the following pairs are seated opposite each other?
(a) Rahul and Murali (b) Srinivas and Arul
(c) Srinivas and Murali (d) Srinivas and Rahul

Ans. (d)
Following seating arrangement can be drawn

Therefore correct option is (d).

Q.6 “The hold of the nationalist imagination on our colonial past is such that anything inadequately or improperly nationalist is just not history.”
Which of the following statements best reflects the author’s opinion?
(a) Nationalists are highly imaginative
(b) History is viewed through the filter of nationalism
(c) Our colonial past never happened
(d) Nationalism has to be both adequately and properly imagined.

Ans. (b)
History is viewed through the filter of rationalism.
Q.7 A contour line joins locations having the same height above the mean sea level. The following is a contour plot of a geographical region. Contour lines are shown at 25 m intervals in this plot. If in a flood, the water level rises to 525 m, which of the villages P, Q, R, S, T get submerged?

(a) P, Q
(b) P, Q, T
(c) R, S, T
(d) Q, R, S

Ans. (c)
P will not get submerged as it is @ 550. So P is not present in correct options. Hence (i) and (ii) options are incorrect. Now compare Q and T. As T is between 500 and 525, T will get submerged. Hence ans (c) as among option C and D. T is present in only option (c).

Q.8 The expression \(\frac{(x+y) - |x-y|}{2} \) is equal to

(a) the maximum of x and y
(b) the minimum of x and y
(c) 1
(d) none of the above

Ans. (b)
\[
\frac{(x+y) - |x-y|}{2} = \frac{2y}{2} = y
\]

If \(x > y \) \(|x-y| = x - y \);
If \(x < y \) \(|x-y| = y - x \)

Now if \(x > y \), above expression (i) becomes

\[
\frac{(x+y) - (x-y)}{2} = \frac{2y}{2} = y = \text{minimum of } (x, y) \text{ as } x > y
\]

Now if \(x < y \),

\[
\frac{x+y-(y-x)}{2} = \frac{2x}{2} = x = \text{minimum of } (x, y) \text{ as } x < y
\]

Therefore correct answer is option (b).
Alternate solution:
Use easy values,

\[x = 1 \text{ and } y = -2 \]

Now, \(\frac{(1-2) - |1 - (-2)|}{2} = -2 \)
or \(x = 2 \text{ and } y = -1 \)

\[\frac{(2-1) - |2 - (-1)|}{2} = \frac{1-3}{2} = -1 \]

which is minimum of \((x, y)\).
Therefore, correct answer is option (b).

Q.9 Arun, Gulab, Neel and Shweta must choose one shirt each from a pile of four shirts coloured red, pink, blue and white respectively. Arun dislikes the colour red and Shweta dislikes the colour white. Gulab and Neel like all the colours. In how many different ways can they choose the shirts so that no one has a shirt with a colour he or she dislikes?
(a) 21 (b) 18
(c) 16 (d) 14

Ans. (d)
As there are 4 people \(A, G, N, S\) and four colours so without any restriction total ways have to be \(4 \times 4 = 16\).
Now, Arun \(\rightarrow\) dislikes Red and Shweta dislikes white so \(16 - 2 = 14\) ways.
Therefore correct answer should be option (d).

Alternate solution:
Only one option is less than 16.
Therefore correct answer should be option (d).
Q.10 Six people are seated around a circular table. There are at least two men and two women. There are at least three right-handed persons. Every woman has a left-handed person to her immediate right. None of the women are right-handed. The number of women at the table is
(a) 2 (b) 3 (c) 4 (d) Cannot be determined

Ans. (a)
Out of six people, 3 places definitely occupied by right-handed people as at least 2 women are there so these two will sit adjacent. Now as only on seat is left it will be occupied by a left-handed man because on the right side of this seat is sitting an right-handed man.

Here, $R^{(m)}$ indicates right-handed man and $L^{(w)}$ indicates left-handed women. Therefore answer should be only 2 women.

End of Solution